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CHAPTER 1

BACKGROUND AND PROBLEM IDENTIFICATION

1.1 The Design of a Control System by Parameter Optimization

The design problem that raised the need for this work
is the one of finding the optimal set of prespecified para-
meters of a fixed configuratioﬁ control system. A criterion
for the design can be derivéd by some evaluation of the sys-
tem response to some standard input. If the-sysﬁgﬁ's trans-—
ient response to a step input is weighted by some criterion
and integrated along all time, a performance indé; can be
defined, the minimization of which gives the optimal design.

In the case of a linear system,lwhose state vector sat-

isfies the equation;

x(t) = Ax(t) x(0) = x (1.1)

PI = x,° W X, + f X' g x dt ‘ (1.2)

where x is the transient state vector, X is the initial
transient state vector and W and Q are positive semi-defin-
ite weighting matrices.

The integral expression in (l.2) can be presented more

conveniently by:



j[ %0 Ox dt = tr [Q+X] ' (1.3)
0

where tr denotes the trace of the matrix, and where:

X = J/ﬂ x x' dt (1.4)
0

Using equation (1.1):

d T, _ o T
ac (x x7) = x x° +

x' = xx A +Axx  (1.5)

e

and integrating both sides along all time for a time invari-
ant system gives:

x x% (t=%) - x x© (£=0) = XAT + AX -

For a stable linear system, the transient response vanishes
as t + », and we get that the state matrix X must satisfy

the equation:

AX + XAT = -X (1.6)

0

where:

%o = X % @

1.2 The Model Performance Index

The Model Performance Index was first suggested by
Rediess T[11] and was improved by Palsson [10] for applica-
tion in an automatic optimization algorithm. The theory is
developed in these two references and will not be déscribed
here. A brief outline of some results, applicable in an

optimization procedure is necessary, however, for the under-

i
10



standing of some computation operations analysed in the
following chapter.

It is desired to approximate the step input response of
a system whose transfer function is:

m
bms + e +bls + bO

n-1
n—ls +....+als+aO (1.8)

G (8) =
s s + a

to that of a model whose transfer function is:

Gm(s) 2 -1 .
15%% 5 (1.9)

The model is reguired to satlsfy the condition:
£ -k <n-=-m

A new transfer function that has no zeros, and whose denomin-
ator is the cascaded system denominator and model numerator,

is formed:

2580
G(s) = k n n-1
(Bks +.....+Bls+80)(s +an”ls +..;.‘+als+a0)
{1L.10)
with the initial conditions:
. =2
e 2
s, 70 D <nem
i-1
x(i+1)0 =b ;i - E: a4 X(j+l)0 n-m<i<n
j=n-m
(1.11)

11



The Model Performance Index is defined as:

PI =//. x 9% dt | (1.12)
0

where:

Gyt (1.13)

& is the model characteristic coefficients vector presented

in the n'th dimension state space:
ar =1 1,0,0...0] (1.14)
-OLO:---()’.K_:L: PV e e . - .

x in the eguation (1.12) is the transient state vector of the
system represented by equation (1.10} in response to the ina
itial conditions(l.l1l). By use of expressions derived in the

previous section, the performance index can be expressed as:
PT = tr[Q-X] (1.15)

X must satisfy the matrix equation

AX + XAT =-X, O (1.6)

where:

X = Xo¥g (1.7)

1.3 The Solution of the State Matrix X

The scluticon of equation (1.6) for the matrix X is a
major concern of this thesis. Palsson [19] has shoWn that
when the system matrix A is written in the phase variable

form:

12



n-1 (1.16)

the first column of the state matrix X, X, ,can be computed

by:
n
2
X, = -=E E. X
~1. n : i-1 =0_ , .
i=1 - n-i (1.17)
where X4 is the {(n-i)'th column of the matrix XO and the
n-i ‘
matrices Ei are defined by the relationship:
E. = -ABE, + a .I l<i<n {1.18)
i i-1 n-i
with
E0 =1

The remaining columns of the matrix X are computed by the

relationship:

X. = =A%, + %
—1 —i-1 " =0, (1.19)

The computation of these expressions is discussed in detail

in Chapter 2.

1.4 The System Transfer Function Coefficients

A method for obtaining the transfer function of a com-
licated'(multi~loop with a multi-input multi-output control-
led member) system given by its components was developed by

Whitaker [13], Griffen [4] and Beyers ([1]. It consists of

13



the following generalized steps:

1. Obtaining the system state equations in the form:

(X
Il

Fg + GE

1

Y Hx + Ju (1.20)

where x is the state vector, u is the input vector, Y
is the output vector and F, G, H, and J are properly

dimensional matrices.

2. Obtaining the transfer function matrix by:

y = [HIsI-F1™l¢ + J] u (1.21)

This method is used to obtain the system coefficients which
make up the matrices A and X, in egquation (1l.6). Although
the accuracy of the computation at this stage is not analysed
in detail in this work, it should be pointed out that the
large number of arithmetic operations done here especially
for high order systems, has been found to be a . source of
significant numerical errors. The accuracy of the computed
performance index cannot be any better than that introduced
in the matrices A and XO‘

The error in the system coefficients may affect the min-
imum search procedure mainly in two ways:

1. When the performance index first increases in a step,

it is normally assumed that the minimum point lies

somewhere along this step. 1In the presence of signifi-

cant inaccuracies such an interpretation of the perform-

ance index increase may be false. Taking a shorter step

14



in this case may even give further increase of the per-
formance index (this problem is later referred to as

the "performance index increase in half a step").

2. In the current optimization program used at the
Measurement Systems Laboratory at M.I.T. and applying
the methods discussed in this chapter, the gradient
method is used for the search of the optimum. The
derivatives of the systeﬁ coefficients with respect to-
the design parameters are used to produce the gradient
at each step. These derivatives, which.are computed by
" incrementation of the parameters and division of the
corresponding changes in the coefficients by the incre-
mented parameters values, are very sensitive to the
accuracy in the computed parameters. In other words,
if the error in the computed coefficients is of the
order of the expected incremental change in the coeffi-
cients, then the resulting derivatives and gradient

values would be completely incorrect.

These two problems are considered again in Chapter 4 where

an alternative method is discussed.

Scaling the System Coefficients

A large number of operations involving matrices and

vectors take place in the solution of equation (L.6).In some

cases significant inaccuracies may occur when elements appear

in certain arrangements of magnitude in matrices and vectors..

15



These cases are discussed in Chapter 2. BScaling these
matrices and vectors so as to rearrange the relative magni-
tudes of the elements may improve the results significantly.
Since all the elements in equation (1.6) consist of system
coefficients, the desired scaling of matrices and vectors
can be obtained in most cases by scaling the system coeffi-
cients.

One way of scaling the cbefficients‘is changing the time
scale. Since the units of the coefficients are powers of
time, changiﬁg the time scale can change the magnitude of
the coefficients in the desirable way. This is illustrated
in the following:

Characteristic coefficients before scaling:

a ceead

q0r 33

n—l’l

1]

Characteristic coefficients after time scaling:

£ 1

8y e a _qr

where £ is the scaling factor. By selecting a valﬁe for f;
the coefficients can be ordered in an ascending or a descend-
ing order of magnitudes as desired. This type of scaling
will be referred to later as time scaling.

Another way of scaling the system coefficients is add-
ing a pair of a pole and a zero of the same value (or at the
same location in the complex plane) which, of course, does
not change the characteristics of the control system itself.

The relations between the characteristic coefficients

16



and the poles are as follows:
ag = product of all poles

a; = sum of all possible products of n-1
out of n poles
a, = sum of all possible products of n-2

’ out of n poles

a _qp=sum of all poles

It follows that adding a pole-zero pair near the origin, for
example, would decrease ag not affecting a 1 significantly,

since:

and

where Py---P, are the coriginal system poles, and € is the
additional scaling pole. {assuming that € is not of the mag-
nitude order of the other poles). There is freedom in the
‘location of the pole-zero pair and the corresponding effect
on the coefficients. This type of scaliﬁg will be referred to
later as pole-zero scaling. There 'are some operations in the
sclution of equation‘(l.G) (as discussed in sections 2.2

and 2.3) where time scaling of .the coefficients cannot.im~
prove the accuracy, but pole-zero scaling may be used effec-
tively for this purpose. The disadvantage of the pole-zero

scaling is that 1t increases the order of the system. The

17



trade-off between the positive effect of scaling and the neg-
ative effect of increased order on the accuracy must then be

considered.

1.6 Severe Inaccuracies QOccurance

There were some typical cases in which severe inaccura-
cies occurred, preventing the completion of the opgimum search
procedure. It is impossible, however, to point out one gen-
eral reason for the occurance of the problem. Severe inac~
curacies result in phenomena like negative performance index
values, the "performance index increase in half a step",
large values of performance index when small ones are expect-
ed, and other results that just do not make sense.

The problem has occurred in cases where the complex fre-
gquency range of the system modes of response was large, or
in other words, the systém poles were far apart. One such
example is the presence of the phugoid mode in the equations
of a controlled aircraft. This mode has relatively low frequen-
cy and small magnitude. ' When the "shprt period approximation
was exercised and the phugoid mode was eliminated, the severe
inaccuracies in the computation disappeared. The additioﬁ
of a remote pole to a system may also cause the appearance
of severé inaccurracies in the computation. In such cases
the problem can be avoided by elimination of loﬁ residue
mgdes. But this is not always the case. In many situations

Jow residue modes are not easy to ident:ify and to isolate,
18



especially in the process of optimization, and it is.not
always clear that such elimination would solve the inaccura-
¢y problem. Thus, rather than treating the different cases
separately, the approach to the problem was by investigation
of the numerical operations trying to identify the potential

sources of inaccuracies and to suggest adequate solutions.

19



CHAPTER 2

THE NUMERICAL COMPUTATION

2.1 Introduction

The method proposed by Palsson for the solution of the
matrix egquation (1l.6) was presented in section 1.3. In this
chapter each step of the solution procedure is discussed in
terms of the explicit algebraic expressions and the arithme-
tic operations, with special attention to the numerical ac-
curacy obtained in these operations. Some parts of the com-
putation are discussed only for the purpose of shedding some
light on the various stages of the procedure, so that
sourcéstof significant inaccuracies that may occur can‘be
spotted more easily.

L

2.2 The Computation of the Matrices Ei 1<i<n

The matrices E, are obtained by the relationship:

E; = -AE; | +A I l<i<n (1.18)

with

This part of the computation can be best investigated by con-
sidering the algebraic expressions of the elements of these

matrices. The first few matrices are given in Appendix A so

20



that the nature of these and of higher érder E; matrices can
be understood. |

From the explicit expression of the Ei matrices, 1t can
be learned that the elements at lower positions in the col-
umns contain higher powers of the sysﬁem characteristic
coefficients. The arrangement of the coefficients in the
matrices elements may affect the accuracy of the computation
in two ways:

1. inaccurate computation of the matrices elements;

2. 111 conditioning of the matrix E, with respect to

its inversion in a later stage of the procedure.

To understand the Ffirst possibility iﬁ should be realiz-
ed that in the computation of low position elements of the
E. matrices,small and large numbers are normally added to-
gether with considerable loss of low position digits.

Noticéjffor example, that the element:

e o 5
Ec(5,5) = 2a, gt 2a a5 - 2a _,a 4 %+ 2a. -a. 1
2 3 5
+ 6an_3an_l-— 6an—2an—l +'2an—l

would be normally dominated by the higher powers of an_l;un—
less some scaling of the coefficients is done. WNotice that
time scaling of the system coefficients would have no effect
on the accuracy of this computation, since such scaling is
equivilant to multiplying the matrix element by a factor,

leaving the relative magnitudes of the addents unchaﬁged.

21



Using a scaling factor f gives, for example:

5 3 2 4
E_(5,5) = 2{f”a ) + 2(£f7a, .fq__,) ~2(f'a__,fa__.)
5scéled n-5 n-3 n-2 n-4""n-1
2 2 3 2
+ 2({f an—2) fan_l) + 6(f an_3(fan_l) )
2 3 5
- 6(f an-Z(fan—l) )+ z(fan—l)
)
= f E5(5,5)

unscaled

Pole-zero scaling can be used effectively to control the
accuracy of this computation. Such scaling, as was dis-
cussed:in“Section 1.5, can be used to magnify the value of
ay and other low order coefficients with respect to a

without changing the value of a

n-1
a-1 significantly. Scaling
would be done to make the addents close enough in magnitude
so that loss of low position digits is minimized.

fﬂe inversion of the matrix En is discussed later in
this ghapter. It is pointed out that ill conditioning of a
matriz{hith respect to its inversion occurs when the ele-
ments on the diagonal are significantly smaller than ele-
ments to their right in rows. It is evident from the E. ma-

trices (consider E_,for example) that such situations can be

5 ¢
controlled by either time scaling or pole-~zero scaling of
the system coefficients. A situation where elements on the
right of the rows are larger than those on the left can be
reversed by such scaling.

One may argue that changing the order of the operations

in the computation of the Ei matrices so as to sum small num-

bers first and then add the larger numbers, minimizing loss

22



of digits, would be useful. It can be verified, however,
that in general these operations are indeed done in such

order, as eaci Ei matrix is computed from the previous one.

n
2.3 The Computation of 2, E;_1X

i=1 l_on—i
n
X4 in the expression J, B, _1%, is the (n-i) 'th
n-i i=1 n-i

column of the initial conditions matrix:

x X X *® s s e s e o s a s X b4
01704 0,70y 0,70,
X xX
0,70,
_ T
Xy = Zp#%g = '
X b4 p.4 b4 " h e s ks e s . X X
| *o, %0, 0 *o, 0 02](2 .y

The initial conditions are computed by equations {1.11) as

explicit functions of the system coefficients. Consider the

case: n=8, m=5, £=3, then:
X _ bO
0, = -
0
X =0
02
x = {
O3
x = b
O4 5
x = b
05 4

23



x06 = b3 - a6b5 - a7b4

xo7 = b2 - a5b5 - asb4 - a7b3 + a7a6b5 + a7a7b4

XOS = bl - a4b5 - asb4 - a6b3 + a6a6b5 + a6a7b4
- a7b2 + a7a5b5 + a7a6b4 + a7a7b3 - a7a7a6b5
- a,a.a. b

77774 (2.2)

The higher order initial conditions involve higher order
products of the system's coefficients, and normally they are
significantly larger than the lower order ones. Computation
aof high order initial conditions involves a great deal of
multiplications and additions, and single precision is in-
adequate if accurate results are desired. Since each one of
the initial conditions depends linearly on one b coefficient,
it caﬁhbe argued that inaccurate computation would result in
initiai:conditions corresponding to another set of b coeffi-
cientgﬁgor, in.other words, to another system. This may
cause problems like the "performance index increase in half
a step", and inaccurate cpmputation of the gradient of the
performance index with respect to the désign parameters,

that were discussed in Chapter 1., The accuracy of xol is of
special importance. Since in the optimization algorithm a
system static sensitivity of 1 is assumed, the wvalue of x

0
must be l. Even a slight error in this value would result

1

in a steady state difference between the model's and the

system's responses, which, at least theoretically, should

24



produce an infinite performance index. This point was not
considered in the original program where the value of xol
was computed in 3 steps, which in single precision floating
point arithmetic resulted in 2 incorrect digits out of 8.
This error has lead to "awkward" values of performance index.
When the wvalue of xol, was fixed ét—i (instead of the unnec-
egsary computation) sufficiently accurate results were ob-
tained.

01 had a maior effect on the computed per-—
formance index in the case of one system, but had no signifi-

The error in x

cant effect in the case of another system of the same order.

This is explained by the "weighting" of thé elements Xq X,
i 73
of the XO matrix by the Ei matrices, first in the sum

n , n
| -1

YE, . ox and then in the product E Y, E._, X .

izt T 4 n o & Fi-l %o

As was shown in 2.2 the lower order Ei matrices contain many
zero elements. It is easy to realize that in the vector

n - .

2, E;j_1 %, the first element is mostly affected by pro-

i=1 n-i

ducts of Xq Elements at the lower positions in the vector
1 . :

are less affected by x This effect depends, of course,on

0;°

the relative magnitudes of the elements of Ei' or the weight-
ing imposed by these matrices. Then, in the product

n
E_l‘z: E, % r the contribution of the elements of the
e T ]

1 ¥ . depends on the weighting by E”L.When

n
vector E:nEi_
. n-i

i=1
. the first elements in the first row of E T are considerably

25



larger than other elements, the error in Xq is weighted most
heavily in the first element of the product vector Xy This
indeed was the case when the problem was first encountered.
Fixing the value of xol at -1 resulted in a significant
change in X(1,1) (§l(l)}' the other elements remaining prac-
tically unchanged, which in turn gave the desired correction
in the computed performance index.

The algebraic expressions of the elements of Ei_1§0 -
are extensive and giving them here in detail seems unnecg;—:E
sary (besfges, they can be easily obtained from the given
Ei and XO matrices). It should be noted, however, that this
part of the computation invoives a great deal of arithmetic
operations and may be a source of severe inaccuracies, If
these inaccuracies are found to influence the computation
signifiéantly, rearranging the operations so that small and
large*gumbers are summed in an optimal order (to minimize
loss*g%‘low—position digits) should improve the results. If
this is done in the computation of the product vectérs
Ei_lgon_ipnly, the additional storage reguired is negligable
(n words), but the additional check operations may be time
consuming. The alternative of extended precision computation
has the disadvantage of having to use a different program-
ming language (see 2.4) if precision higher than double is
desired. The cost of inteffacing languages in a program is

considerably high, and the trade-off between the different

possibilities must be considered.
26



Considering the corresponding expressions in the mat-

rices E; and X it can be verified that time scaling of the

Ol’

system's coefficients is equivilant to multiplying the re-

sults by a factor, and thus, has no effect on the accuracy

in the computation of the vectors E; X, or of the sum.

n n~-t

3 Ei_1 ¥p (see a verification of a similar argument in
=1 n-i

2,2). Pole-zero scaling can be used effectively to arrange

this computation so that small numbers are summed first and
then added to the larger numbers. This can be done by
placing the pole-zero pair on the left half of the real
axis far from the origin which would make a, appreciably

smaller than a, Notice, however, that such scaling may

-1
have an undesirable effect on the E matrix, increasing the
elements to the right of the diagonal in the rows. As is

discussed in section 2.4 this may "ill condition" the matrix

with respect to inversion.

2.4 The Computation of X4 and Matrxix Inversion

X

isfies the equation:

is the first column of the state matrix X. It sat-

Enil = .
i

E

'n
=]

. b4
-1 =0, (2.3)

or

-1 fi
X = B E. X
=1 11 i=1 i-1 _On-i (1.17)

This section is mostly concerned with the numerical errors

27



arising in the inversion of the matrix E for the solution

of Xy
A popular method for machine inversion of matrices is

the Gauss-Jordan method. This method is described in de-

tail in references [5], [6]1, [7]1, and [12] and will not be

presented here. It is , however, the matrix inversion

method referred to in the following discussion.

A significant loss of accuracy may occur when elements
on the diagonal of the matrix to be inverted are consider-
ably smallé&r than elements to their right in the rows.

Such situations may be avoided by reordering the rows of the
matrix so as to place the larger elements on the diagonal.
Such reordering may require extensive check and bookkeeping
operations for high order matrix inversion. In the case of
the Eﬁ:matrix such a solution is inadequate in general,
since,g}ements in all the rows appear in a similar arrange-
ment:b%5re1ative magnitudes (see Appendix A).

The usefulness of scaling a matrix by a linear transform-
ation before scaling is gquestionable. The scaling and rescal-
ing transformations may cause additional errors. Multipl?ing
the matrix elements by powers of 10 when floating point arith-
metic 1s used may result in a matrix that is isomorphic to
the original. Indeed, attempts to use such scaling by a trans-
formation matrix did not improve the inversion accurécy.

Scaling the system characteristic coefficients is, as

28



discussed in section 2.2, a useful tool for initially arrang-
ing the elements of the E_ matrix in a desirable order of
magnitudes. This is illustrated in an example case in Chap-
ter 3.
| The situation of diagonal elements that are considerably
smaller than elements to their right may arise at a later
Stage of the inversion procedure. How the pre-conditioning
of the matrix should be done to avoid such cases is not
easy to‘determine, since the relation between the elements
of the’reéﬁlting_matrix and the elements of the original ma-
trix-is not a simple one. One way to handle such situations
is suggested by Hellerxrman [5, p.57]. It consists of using
the largest element in the corresponding column rather than
the diagonal as a pivot élement, while recording the place
of thié‘eleﬁent‘ Then, since the rows and the columns of
the inverse matrix appear scrambled, rearranging them in
the riéﬁt order {the Gauss-Jordan method is referred to as
the inversion method).

A number of measures. and criteria for the inaccuracy in
matrix inversion and linear equations solution procedures
can be found in the literature. They all fail to give an
exact measure of the inaccuracy (to indicate how many digits
in a result number are incorrect) and, at best, give an indi-
cation that some significant inaccuracy has occured in the
computation. One such check often used is obtained from the
elements of the difference matrix:

D =na-AT - 1T
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In our case of interest this check is hardly satisfactory.
An investigation has shown that when the inverse of E_con-
tains elements considerably different in order of magnitude,
the small elements are computed with large errors. In the

n
computation of the product E;J‘z: E,_1 X the contribu-

tion of these elements is negli;ible, andnéien relatively
large errors in them would have no effect on the final re-
sult. Yet, when the product_En E;l is computed for the

' check,‘these elements are multiplied by large elements of
the matriﬁMEn{ and the errors in them may produce appreci-
ably large elements in the check matrix D. On the other
hand, errors in the large elements of E—l,‘which can affect
the computation of X significantly, may not be detected by
the check at all. Thus, such checks can be used to obtain
a general idea about the accuracy of the computation but
not as;é measure of it, especially not as a basis for com-
pariégg‘between numerical results.

Absolute large values of the matrix elements (not only
their relative magnitude with respect to each other) have
been found to affect the accuracy of the matrix inversion.
Severe inaccuracies have occured in some practical cases
when the matrix determinant was very large. When the ele-
ments of the matrix were divided by a certain factor before
and after the inversion, accurate inversion was obtained in

these cases.

A different approach to the solution of the vector x
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in the matrix equation:
i=1 n-i (2.3)

is usually referred to as the indirect or the iterative ap-
proach. The Gauss-Seidel method is a popular iterative meth-
od used for machine solution of systems of linear equations.
It is described along with some other such methods in refer-
ences [6] and [7], where it is also pointed out that these
methods may or may not converge On the solution depending

on the numerical values involved, even in the absence of
round-éffwerrors.

If a sufficiently accurate computation of .9 cannot be
obtained by scaling the En matrix, an extended precesion ver-
sion ¢f the matrix inversiqn algorithm may be used. Since
IBM/370 FORTRAN does not have a built~in extended precision
facili%y, the MINV program from the IBM PL/I Scientific
Subroutine Package [8] has been modified to invert a matrix
in quﬁ&ruple precision. This program can be called by the
FORTRAN optimization program whenever an extended precision
inversion is desired. The modified program and the inter-

face control cards are given in Appendix B.

2.5 The Remaining Columns of the Matrix X

After the first column of the state matrix X is comput-

ed, the remaining columns are computed by equation (1.19):
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Note that except for the last element in each column x, all
the elements are obtained by shifting the elements of the
previous column upwards with an inverted sign and adding an
element from the previously computed XO matrix., Both oper-
ations do not produce any numerical error. In Figure 2.1 the
elements of an 8'th order state matrix X that are computed
by shifting the elements of the first column and adding an
element from the Xpmatrix are denoted by x, and elements
that ;nvolve multiplication of the system's coefficients by
a prefibus column are denoted by *. The computation of the

* elemqhts in this stage from previously computed values

may 4dd to their inaccuracy.

M EEEEEE
*xxx:xxxx

I T
i

* ok % ok M OM oM oX

* %k ok ox XN oMM

* N Gk ko F MM

* %k k ok % ¥ X

|3¢-**>(->l—ﬂ-**|

Figure 2.1 - Additional Inaccuracy in the Computation

of the Remaining Columns of an 8'th order X Mateix

In the case of the Model Performance Index only the elements
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that are both in the first £+1 rows and in the first £+1
columns ( £ being the model's order) take part in the com-
putation of the performance index (e.g. in the case of an
8'th order system and a 3'rd order model only the elements in
the 4 x 4 square in Figure 2.1 affect the result). It fol-
lows that for most practical cases this part of the compu-

tation does not introduce any numerical inaccuracy at all.

2.6 The Computation of the Performance Index

The ﬁérformance index is computed by equation (1.15):
PI = tr [Q-X]

where 0 is the weighting matrix in the performance index and
X is the state matrix whose computation was discussed bhefore.
Excepéafor the case of very high order systems and when the
correct value of PI is close to zero, this part of the com-
putapiéh should not introduce additional severe inaccuracy.
If the expected value of PI is small, then accurate low-po-
‘sition digits must be ob@ained, and single precision may not
be sufficient. Also when the order of.the system is high,
the large number of multiplications and additions may resuit
in significant loss of digits. Note that in the case of the
Model Performance Index the elements in the matrix Q that
are both not in the first £41 rows and not in the first £+1
columns are all zeros, and thus, the amount of computation

in this stage depends only on the order of the model.
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CHAPTER 3

AN EXAMPLE CASE

3.1 Introduction

Because of the nature of the problem the numerical ex-
ample cannot be of a.simple, low order system. A real in-
accuracy problem encountered in a control system design is
discussed_ in order to demonstrate some of the inaccuracy
problems and their solutions as describéd in the previous

chapters.

3.2 The Example System and the Inaccuracy Problem

The example control system is given by its mathematical
block diagram in Figure 3.1. The numerical values are given
in F#gﬁ%e 3.2(a) in the format of the System Description Pro-
gram[i2]. The rows of the S8YS5 and the SIG matrices corres-
pdnd to the blocks in the block diagraﬁ. The last two rows
of these matrices represeﬁt the model zeros that are cascad-
ed to the system to use the Model Performance Index. The
controlled member state matrices and the design parameters
location and initial values are also given. The computed
values of the over-all transfer function characteristic co-
efficients (ACOF(I)), the numerator coefficients (BCOF(I))
and the initial condition vector are listed in Figure 3.2(R).
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The transfer function coefficients are time scaled by a fact-
or of two.

Significantly inaccurate computation was experienced in
attemptihg to optimize this system. The numerical values of
the matrix En’ the determinant of this matrix and the state
matrix X corresponding to the initial values of the design
parameters are given in Figure 3.3 for comparison with other
cases. The computed performance index in this case was 0.052
while the correct value is 0.26, as was verified by integra-
tion methods. Notice that the computed value of the first
e;ement of the‘matrix X is 0G.55. The corfect value of this
element was found to be 0.75. The other elements of the

matrix X are sufficiently accurate.

3.3 The Practical Solution of the Inaccuracy Problem

In: order to obtain more accurate results in the computa-
tion‘gf'the example case the value of the first initial con-
dition was fixed at -1, and since the wvalue of the En matrix
determinant was very large, all the matrix elements were de-
vided by 10° before the matrix inversion. The resulting E
and X matrices are given in Figure 3.4. The given elements
of the En matrix are before reduction for comparison with
other cases and the determinant was computed after reduction.
As can be seen in the figure, the computed value of the first
element in the matrix X is now 0.75 while the other elements

are considerably closer to the ones before the correction.
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The'resulting performance index value was 0.26, differing by
less than one percent from the value obtained by integration.
Similar agreement between the performance index values com-
puted by integration and the ones computed by the method
discussed in this work was experienced in the following steps
of the optimization. It is interesting to note that the
elements at lower positions in the columns (or the rows) of
the X matrix are closer to the correct values, which is in
agreement with the error weighting effect, discussed in sec-
tion 2.3

The correction of the initial coﬂdition has, of course,
no effect on the matrix E. - This cdrrection affects the sum
éi B, _ 5' while the reduction of the matrix E, elements

i=1 n-i :

affects the matrix inversion, so that the first column of the
- n

. >, B, .x is affected by

. i-1=0 .

‘ i=1- n-i

both corrections. Indeed, it was found that both corrections

matrix X which is equal to %;

were ‘hécessary in this case. When only x was corrected

0y

and the reduction of the En matrix elements was not exercis-
ed, negative performance index values were obtained at later

steps of the optimization.

3.4 Scaling the Transfer Function Coefficients

As was discussed in the previous chapters scaling the
transfer function coefficients may be useful in conditioning
matrices and vectors for more accurate computation. Consid-
- er the case where a pole -300 was added to the example system

presented in section 3.2. The optimization program current-
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- 1y used at the Measurement Systems Laboratory at M.I1I.T. re-
duces the system coefficeints by time scaling to prevent large
values of the E_ matrix elements which are undesirable as
discussed previously. The scaling that was done in the re-
mote pole case is shown in Figure 3.5. This scaling has re-
sulted in an unfavorable conditioning of the matrix En where
some of the diagonal elements are smaller than elements to
their right, as shown in Figure 3.6.

When the scaling factor was inverted as shown in Figure
3.7 anq the increase of the E, matrix elements was handled

by dividing them by 10710

, the resulting condition of the E,
matrix was a desirable one, as the elements on the diagonal
déminate in magnitude the elements on their right. This is
shown in Figure 3.8. The resulting error in the computed
performance index was in this case 30% of its value.

It is not argued that changing the condition of the ma-
trix Engwould usually improve the accuracy of the computation.
In sdﬁé;cases it was found to have no effect at all. The
possibility to control the condition of the maérix by such
scaling should be noted and used when necessary. However the
problem of large values of the E  matrix elements should be
treated directly by dividing these elements by a factor and
not by scaling. Scaling should be used on a selective basis
to condition matrices and vecters for specific operations
like the matrix inversion. The establishment of more specific
criteria for the usefulness of such scaling in different cases
would provide the control system designer means to obtain more

accurate computation in many practical cases.
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Figure 3.1-A Mathematical Block Diagram and Data Input Definition of the

Example Control System
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SYS MATOIYX SIG MATRIX

SU4P 3.5 0.0 Gun 0.0 1 12 2 ¢ 0
GAlwW Qs 14800 0,0 CuD 0.0 2 0 3 0 0
S1Mp 1 ald 0.0 G.0 0.0 3 12 4 c 0
Gan 0.75000 0.0 C.0 0,0 4 0 14 0 v}
INTG 0.0 9.0 LI 0.2 714 15 1 3
Su4p ] 0.0 0.0 0.0 4 15 18 0 o}
RE &), 0.08000 0.0 0.0 0,0 : o o16 5 2 2
N T 5 e N0 nLD 5 5 3 6 3 4
SUMP 0.0 2.0 2.0 0.0 1 ) ) 0 ol
GA TN 0,0A19D 0.0 8,10 0.0 7 o 11 o G
LENL 5.02300 G.25387 .0 C.0 11 0O 12 5 )
LEOL 0.40000 0.500G0 J.9 0.0 O 6 13 A 0
RE AL U.34400 .0 e 2.2 8 S S & |
RE &L 1.01637 9.0 £.0 0.0 Q 0 10 7 0
PARs NIg SYS MATRIX L3JCATINN PAR. VALUE
i ) 2 s 2 0.148
2 10 4 2 0,081
3 1, 3 C.250
& 12 4, 2 C.430
5 iz , 2 Lo 5L0
MIN PARAM INCREMENTS =-- «5G03E-02 < ANQLE-Q2 «2000E-01 .210CF-C1 +2000E-01
ICGN 5
XCAN ACON MATRIY . RCIN MATRIX
3 -.6530 1065. -B2.00
& -2 19005-0)! -,1000E=-0QlL ~11.860
DOON CCON
b -2 1130E-01 c46A0F=(02 2.914
7 . .0 12.43 : . 20
ITERATION NUMRER 0
DESIGN PARAMETER VALUES

Qe 1480200G0E+00 0. B0S9%99T70E~01 C.25CC0CCAE+OC 0.3S999593E+00 CLE5A000NAT+00

Figure 3.2(a)-Input Data for the Example System in the System Description Program Format
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SCALING NECESSARY, SCELE FACTOR = 2.00

UNSCALED DENSMINATOR LCEFFICIENTS
Do 75625407 3a251452+08 0. 21BSE+0E
Ua 1UNDEFL]

UNSCALED NUMERATCR COEBFFICTENTS
0.,8703E407 0.1995%+08 0.1325%+C8

SCALEC DZNOMINATOR CCEFFICTENTS .
0.,2965E+05 Qo 19E4E+06 Q. 342LE+06
N.10COE+0C] .

SCALED NUMERATOR COFFFICIENTS
T.3402E+05 0.15595+06 0.2073E+C6

ACCF = Q.2B93£+405 0.1932E+06 0.3380E+06

BCOAF = N.2893E405 0o1326E+06 0al761E406

INITIAL CONDITION VECTQCR
~0.99999982E+30 0.0

~0,10867187E+05 0.13419100E+07

0, B543E+07 02 18645 +07 5.22735+06 D.78865+04 0.13695+03
2, 2516E+07 C.1027F 406 0.8S903E+03
Co 2670E+06 0o 1165F+06 C.2B4TE+05 0.1971%+54 1.6B43F+#02
PLG111E+CS Ca0Al8E+0)4 o.12387F+03

0.2651FE+06 -0,11615+406 0.28388+405 0.,1966F+04 0.68335+02 0,1008E+01

CuT750GE+C5 C.E45%E+L4 0L 1052E+(3

"

¢.2 B 0.10%26182F+03 0. 17354609 +04

~0+3317CC68E+08

Figure 3.2 (b)-Computed and Scaled Transfer Function Coefficients and Initial

Condition Vector
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DETERMINANT OF E= 0.155070+&8

E MATRIX

Q.0 ~0.386400¢26 0.0 “0,53013N+CE
0.39542D+07 0.264020+08 0.458000+CR Q3622308
~3.2T0L90+09 ~0.180010+10 ~0.312540+13 —0.242920+1C
0.123320+11 0.82059N+11 0.142240+12 0.106840+12
m0.423TIN+12 =~0a28172D+13 ~0,406TT0+13 -0 3T3GEN+13
N.11941D+14 D.79304N4+16  D.136650+41%  0.104520+18
~0.30258D+15 ~0.200840+16 —0.345490+16 —Qo263520+16
0.785880+16 0.522370+17 D.899L10+17 N.68£250+]17

X MATRIX

0, 5503200+90 =0.300000+00 ~0.527510+30 -0.295130-12
—0,500090+400  0.527510+07 0,395130~12 -0,24472M+C1
—0.527510+00 —3.395130~12 N.244720+C1 2,121010-11

0.395130-12 =0,24472D0+01 ~0.121010-11 0.,2625704+03

0. 10774D+03  DL121010~1] ~0,262670473 ~7,554220+04
-0.1735504C4 0.2629T0+03  0.554320+C4 0.166720+(5
~0,111300+05 —0.554320+04 —0. 19672D+{5 0.26561D+07

0.134750+37T 2.196720+05 ~D.26501D4C7 -12.0217¢0+CE

J.C

0. 153350+0°F
-0 134310+ 1¢

0.470610+11
~0o 1560ED+13

C.4%181C+14
-0, 116980+]¢

J.285440+17

0.107740+03
-0.121010-11
-0.262670402
-0, 54720404
C.l630E0+06
-0, 150550407
-B.4511e0+08
9.230790+12

~2,5467530+235 0.0 ~0.126660+03
0.3377SD+0G7  D,2L1850+06 Q.933TT0+04
“N.249830+26 —2.146T76M+38 ~5.425190+76
0,11046D+11 0.588090+09 0.146450+08
~0.368530+12 —-J.177400+11 —0.412670+09
CL.10118D0+14  2,442590+12 2.17%570+11
—0o25756D+15 —0,1N4340+14 -0:27195D+12
C.H660T10+16 D.28L56D+15 L.B814750+13

-0,1735%50+04 =0.11130D+05 0o 13+750+0Q7
0.262570+03 ~(.55432T+04  D.196720+05
C.55432D0+04 —C.1G0720+05 —0.265010+07
0o 176720+0% 0.265010+407 «0,921760+08

~(a15035D+0T =0, 431160 0R UL.23RTSN+LD
£0.30256D0+C8 ~0.55048N+«08 -0, 163110+11

~0.592480+08  U.3URGAD+1L -0 ,G0.360+12
~t.163110+11 —0.6033&0+12 0.370410+14

Figure 3.3-The Matrices En and X Corresponding to Initial Parameter Values of

the Example

System
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DETERVMINANT OF E=

E MATRIX

n.C

0.39542D+07
~0a. 270190+ 39

0.123320+11
~0.42377D+¢12
L Dell941D+14

T -0.30258D+15

0o 78688D+16

X MATRIX

DaT5317D+00
~G. 52000070
—00554450+00

0.38158D=12

0. 107770403
~0.173550D+04

L =~0.11130D+G5

Ve l24740+07

-0, 3884230+ 4
0.26402D+08
=0 18021G+10
0.A82369N+1]
=0.2831720+13
0.79304D+14
-0.200840+16
0a52237D+17

~2.5060000+02
CaB5545MN+00
~0,3E1€8D~12
~0.247650+01
Cal1l686N~11
0.263060+03
-0.554320+0%
D.196710405

Figure 3.4-Corrected

0.155070+28

Ot
D.458220+08
-0,7312940+10
0.14224D412
-0, 4867T7103+13
.NL.13665D+15
-0.24545D+16
0. 89901D+17

“0 . 554450400
0.38l630-12
8.2647650+31

=0,.1l1l6850-11

-0, 26306D+23
0.554320+%04
—0.19671N+05
-0.265C10+07

-« B30130+0E
L 0.3672220+08
—0.242920+1C
C.109840+712
~0,373980+13
Cal45204+18
~0.253520+16
DLEBR2ENDFLT

-N.3816680~12
-0.24765C+01
f.11688D-11
0.263360+07%
~0:.554320+04
N.186710+C5
C.285C10407
—-G.9217&D+C8

n o,
e ]

0.15235C+08
=0.12481C+1¢C
Na%105610+11
=0, 15SCED+13
T A41810+14
-0.110985+16
0. 28544D+17

Js LOTTID+03
-G.116360-11
—3. 263260403
-0.554320404

Oa 1O63CED+05
-0, 150550+07
-0.4511&0+08

D.2387S0+110

—C.56753D+05
C.387790+07
=04249630+4+( 9
C.113460+11
—0e36853D+12
C.lali9hG+ 14
~0.252560+15
C.66T710+16

~C.17355D+04
0.263060+03
CL.854320+04
0.166710+05
“0a152590+07
Ca20256D+08
~0:530470+08
=0+163110+11

0.0
0.2118504+06
-G L4476+ 08
0.58B050409
—Ha177400+11
D.442500+12
0. 104340414
2.281560+15

-0.111320+05
—0.554320+404
5. 166 TIN+GS

C.263010+07
~0.45116D+08
—2.59%470+028

0,30893D+11
—3.930350+12

-0.136550+03
0:.933T70+0%

—0 . 426190+06 .

C0.146456D4+0R
—0.412670+09
G.1945704+11)
-0,27195D+12
D.914750+13

0.,134740+07
0:196710+05
=0 .25650104+27
=03.221750+08
0,2357150+10
-0.1£63110+11
-0:.990350+12
D.37T041D+14

Values of the Matrices En and X of the Example Case (the

given Elements of En

are before reduction)
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'SCALING MFCESS8Y, SCALF FACTAR = 2

TUMSCALED DENPMINATODR

J0.4393F+73 Q. io00Te0] i o
TUNSCALED NUMERATAR CCEFFICIENTS : B e
B.2639F+10 7D AGEAEFTTTTTT DUAN1SEFL D NeBP2ER+0G 7T QL AL2F+0RTT 0L T 06 i
SCALED DENDMINATER CCEFFICIENTST 77 N i -
‘ D.AGT3E D7 Oy 267GF +08 D,52025+00 L ROTOR+8 fL1Ta2Fs0R 0.4431E+7 N3P TIREOL DL1PRAE+ 05
3.21995+72 L1070 +0]
SCALED NLMRRATAR COFFEICTENTS 7 7=~ o T ; - T T e
Ne5L54F 07 0.23620+0R° 0.3137E+08 0.1331%40R 0L TTRLFANE 0. IRTAF+D5 o B
SCALTMG NECESSARY, schE_ﬂ5c125¥;__  4.00 )
PNCGCALED DENMMINATOR COFFEICTIENTS N -
T L 4AGAEHNT T QLGRS T TTTOUS 2GR F08 T T0 4078F 08 T 0.1 TO2THNRTT T TN 4471 F 40T N IZTIERGE [ i YA L
0.21695+03 0.1C00F+DT I
UNSCALED MUMFRATIR COFFFICIENTS N

"SCALED DENOMINATOR CORFFICIFATS

N.2300F+10

0.5154E+37

De BITAF+D4
J.11035+03

DLTEPER 1D

DL.2362F 08

T, 11647 +06

CCEFFICTIENTS
T NL6550F

T0.3137T 4R

0.4D645+08

5.190%8801° 77

T SCALEDR NUMERATER CCEFFICIRNTS 777770

J. 18R+ 08

Gah2TaE+06

ALBTREELD0

5.9T245406

DLHHNOFENS

VAR

DLIRTAE+0R

QLT AGE+ A

N.26175+37

L HIGOTADR

3.3005F+04

© 3.1007F+35  0.9225F05  0.2451F#06  M.2L87Eed6  CL3029E+435  D.LITPEeI4 e
&CUFW=:,Q-R?P?FfﬂfuWE;1145E19§_n91“91“?*95 0.6320E406 0.55R1F+06 0.2760E406 0.4NT7540S  0.20E0%+04  0.1099E403
ACDF = LLI000FR0L o : o _

RCNE = 0.8563E+0%4 0.784TF+05  0.23057+0¢ C(.18356+06 0.2505E405 0.7971+03

Figure 3.5-Scaling the SYstem Coefficients of the Remote Pole Case
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GETERMINANT QF E= q,25787N+36

E MATRIX o
F.L71250+35 0.5 CL.30213N+04s 2.0 - 111620407 O.D TJ.P194508 05 2.0 De213240+233
—0.18E24D+07 50,251 4EN+QETE0LARZEINHNT —A,12RIPDLI —ALIA2TINHNS S0 SORGEN I8 SN BAATENE 3T =0, SO54GN DA =0 T EsDeNS T

C.206G2N+09  2,27541N+12  J,66732N¢1T O.152340+11 A0135N+1] 0 (.454440+170 2,229 75D¢08 NGLD45TH+D3 0206090+ 07

TG TELENELL —0.235A8NH12 —0LRZAA0DHLZ? —0.129440¢1% =0 U1 EINH]T =D, 555400812 =0, TTAONN411 —0. 542230 1) —PL 1613000

D.,13792D+13  DL184190+14 D.6444TD+LA QL10LLIIN+1% DL ASANENH]IA D,.4723180+16  S,e 0121013 N,410870+12 0,122380 ¢ L1

—0.II519N+15 —0. 4N 4 N+1 AT S0, 401480414 =D TTRAANHELA =, 6T552N+1E —0L330170416 —F.45T5904 15 0,2 1P2 1N+ L4 «(,031230+]12 7

DLTGTRSNFLE  JL1CESSNHIR 0.3T2TEN+LR OL5R4TED+1A D,512350418  £,2010%004 18 20740810+ 17 2.74121N+14  DLTRADTC+EG

— N ANEEON+ 1A R0, BITVANS LS FRAE TR0 =0 A4 AIRNEZO —N L ARS220 420 =0, 189730420 <2 PAZCANF]Y 00132750+ =0, 530020415 7

0.458040420  0,511640+421  0.21200N0+22 N.3356A0+22  D.29411IN0+22  O.143747422  2,.100170+21 £,133450+20  0.405730+13

Figure 3.6-The Matrix E, of the Remote Pole Case after Scaling the System Coefficients
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SCALTING NECESSARY, SCALE FALTOR = 1,50

UNSCALED NENOMINATCR CCEFFICIENTS
0.2320E+10 0.76256E+10 0.6659F+10
Q0.4359E+03 0. 10C2E+01

UNSCALED NUMERATOR COEFFICIENTS
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CHAPTER 4

ALTERNATIVE METHODS FOR APPLICATION IN A PARAMETER

OPTIMIZATION PROGRAM

4.1 Introduction

The search algorithm of a parameter optimization program
must utilize other routines thét execute some specific parts
of the computation, like the system mathematical representa-
" tion and the solution of equations like the mat:%é*equation
(1.6) . The methods presented in this chapter are‘an attempt
to take more accurate and cost effective approaches to the
problems of the matrix equation solution and the system re-

presentation.

4.2 A Minimal Method for the Solution of the Matrix Equation:

AX + XAT = X,

The method for the solution of equation (1.6) that was

suggested by Palsson [10] and was described and analyzed in
sections 1.3 and 2.1 #hrough 2.5 is extensive and for the
most part inefficient. The number ©Of arithmetic operations
in this method i1s very large, which makes the solution of the
equatidn for many practical design problemns both expensive
and inaccurate.

The method proposed in this section minimizes the num=-

ber of arithmetic operations needed to solve the equation.
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It takes advantage of the fact that the matrices X and Xy

are symmetric and the matrix A is in phase variable form.

Since the matrix X is a symmetric n'th order matrix(n

n{n+i) -
2

Consider the case of a 4'th order system. The matrix equation

being the order of the system), there are uhknowns.

in this case is:

0o o] Ix

0 11 X120 X13 X4
0 X123 X3 ¥23 ¥y4
0 X13 ¥23 ¥33 X34 4V
-a. —a. =—a. —-a x X b4 X o
%0 TR TR2 T3] {*u4 %24 ¥3q *ad
%11 *12 *13 %1 ] fb 0 0 =-ag]
X12 ¥p2 ¥23 ¥pqf {1 0 0 -z
Too|¥13 ¥p3 X33 X34] j0 L 0 -a,
x X X X 0 0 1 -a
14 *24 *3¢ Faq| [ 3]
r;{ X X X B
X°11 Xolz x°13 X014
_ fyoaz %22 P23 Oag
x013 X°23 x033 X°34
| 034 "0p4 034 04y

0. . of the
. 1]
matrix X, are known, and the elements Xij of the matrix ¥

where the system coefficients a; and the elements x

are unknown.
The following 10 independent equations for the solution
of the 10 unknowns are readily obtained from the matrix

equation:
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12

Xa2 T %13

X23 T ¥4

Xpg T Bp¥11 T A1¥12 T 22¥13 T %3%14
2x23

X33 T X4

X34 T Bp¥pp T 1% T 92%33 T 3%y
234 -

Xaq T BpX13 T *a3z T 22%33 T 84%34
“2ag¥k) y = 2a)Xp, = 28,Xy, - 233K,y

= -x

o o o o O o o o o O
(VRN PV O R I S I S e e
Wb W s W N

[N
=9

The equations are slightly modified and reordered in groups:

!
group (a) Xy, = = 3X4
11
x.. = - iy
23 2704,
X = lX
34 27045
group (b) X4 = "Xy3 T X
_ 13
group (c) ¥13 T T¥22 T %o,
o 2
X = —X - X
24 33 0yq
~group (d) *24 T 20%11 T 21%12 T 22%13 T A3¥1y TR,
X33 T 8pX1p T #1¥pp T Ax¥p3 7 83%9y ='x024
g4 T Fp¥13 T 81%¥p3 T 8¥33 T 83%¥gy ==X,
-2 - 2a - 2a,x% - 2a = 34
20*14 1%24 ar¥%34 %44 ’Xo44

The original set of 10 independent equations is easily re-—

duced to a set of 4 independent equations in the following way:

The unknowns in group(a) are now known.
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{b) ( here only xl4) are directly obtained by substitution

of solved unknowns of group (a). The unknowns on the left

hand side of group (c¢) and all the unknowns that have been

solved are substituted into the equations of group (d) to

give the reduced set of 4 equations for the 4 diagonal un-

knowns:
Tagx g tagKy s Xag =Xy Ta3%) *%aixo '%alxo Xy
14 13 1 22 1 l} 23
—a.X,,ta.x : =—3 —a.x -—a,x +=x - b 4
1722 73733 ‘ 024 3 023 212 O22 2 022 270 Oll
a.x -—a.X + bid Ty ——a . X —ued ., X -3 X
0 g; 2733 44 034 2 3 O33 21 022 0 012
2a.x..—2a.x =—3 +a.x -2a.x -2a.x
1733 3 441 044 2 033 1 023 0 013

After these equations are solved for the diagonal elements,

the unknowns of group (c) are obtained easily.

This method becomes an effective tool for the solution

of the matrix equation for systems of any order when its fol-

lowing general properties are realized:

The simplicity of the operations in the derivation of
the final set of n equations is the same for systems
of any order. These operations are simple substitu-
tions of one element by another, which is done by
manipulation of the unknowns indices. Relatively few
arithmetic operations are done in arranging the final
set of eguations.

Because of the special arrangement of the unity ele-

‘ments in. the matrices A and AT, there are very simple

relations between the indices of the unknowns in each
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equation, which enable one to describe the reduction.
operation that was discussed above for the 4'th order

case in the following four steps general scheme:

a} The encircled elements are Xll.éiza *13 *14 *15 *16
the elements of group (a) which %22 é{:? %24 %25 ¥
are equal to corresponding ele- %33 6:9:x35 *36

ments of the matrix XO divided -

by 2.

b) Conseguently, the ¢roup (b) —}211 @ Xy
elements are obtained. X590 X5y
%33 (*34

%55
66
c) The group {c) elements are %11 Xlg,XIB X14.%15 X156
. ’.I hd’
expressed in terms of the Xoo x2§;x24 XZQ;XZG
: e e
~diagonal elements. X394 x3%¢x35 X3¢

~
|

d) All elements are substituted into the group (d) equations
that become the reduced set of n equations for the solution
of the n diagonal elements.
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In the machine procedure steps 3 and 4 will be built by index
manipulation in the instructions that form the reduced egua-
tions set.

After the reduction it . is left to solve n linear eguation
in n unknowns, or, in other words, it is left to solve an
equation of the type:

where x and ¢ are n dimensional vectors and 3 is an n x n di-
mensioﬁal-matrix. This reduction can be recarded as a reduc-
tion of the matrix equation (l.6) to the matrix eguation (4.1),
or as a reduction of a set of n x n.linear equations to a set
of n linear egquations. For comparison, in the method suggest—
ed by Palsson the equation:

E X = Zl Ei‘lion-i (2.3)
(whiéﬂREan be regarded as another reduced form of the ori-
ginal matrix equation) must be solved for the first column of
the state matrix X. Numerous arithmetic computations must be
done to obtain the Ei matrices first, and then the sum vector
on the right hand side of the equation (see sections 2.2 and
2.3). The number of operations that must be done to obtain
the matrix B and the vector ¢ in equation (4.1) is rela-
tively small. There is no loss of accuracy at all in obtain-
ing the matrix B, and there is a minimal amount of arithmetic

computation in obtaining the vector c.
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If the operations that must be done prior to the solu-
tion of equation (2.3) are compared to the reduction opera-
tions that must be done prior to the solution of equation
(4.1) in the new method, the advantage of this new method

“¢an be realized. The computation of the remaining elements
of the X'maﬁrix which is done by simple substitutions in the
new method, is alsc much more complicated in Palsson's method,
which again involves matrix operations. (As was shown in
section 2.5, if the Model Performance Index is used and the
order of the model is small enough, the computation of the
remaining elements of the X matrix can be done by simple
shifting operations, in which case this part of the computa-

tion in the two methods will be of comparable simplicity.)

4.3 An Alternative Approach to the Derivation of a Linear

Jgf;tem Transfer Function

dne ﬁethod for the derivation of the transfer function
of a multi-loop system with a multi-input multi-output con-
trolled member was mentioﬁed in section 1.4. For high order
systems the matrix operations of equation (1.21) require a
great deal of computation adijoined by loss of accuracy. As
was discussed before, significantly inaccurate system repre-
sentation may not be tolerated by the optimization procedure.

The approach suggested in this section is to obtain the
transfer function of the controlled member first (if it is

not given in this form) and then obtain the transfer function
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of the whole system by multiplication of the system members
transfer functions in the proper order. This approach
actually replaces the matrix operations by polynomial op-
erations. The accuracy of arithmetic operations between poly-
Eoy?al; pas not been examined in this work, and while the
amount of computation woﬁld”pr$£a51y-bé sméiler thén in the
n dimensional matrix operations, improved accuracy 1s not guar-
anteed. When the system members are represented by their
transfer fgnctions, numerator and denominator polynomials
can be multiplied and summed in any correct order, to give
the over-all transfer function (e.g: obtaining the transfer
function for each loop, proceeding from inner to outer loops).
If the controlled member is given by a set of dynamic
‘equations, its transfer function must be derived first. In
the casé of a single input.this can be done by application of
equaté@%s (1.20) and (1.21). (Notice that in many practical
caseéuﬁhe order of the controlled member may be appreciably
smaller than the order of the whole system, and the small di-
mensional matrix operatioﬁs to obtain its transfer function
would not cause inaccuracies.) In the ca;e of a multi-input
controlled member whose inputs may be coupled, the transfer
function can be derived by polynomial manipulation. Consider
a controlled member with two inputs and three outputs, whose

Laplace transformed dynamic equations are:

Gy + Ly, + LYy = muy + m,u, (4.2)
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where ' is the i'th output and uj is the j'th input and &i
and Ej are 3 dimensional vectors whose elements are poly-
nomials of the Laplace variable.

In the control system the controlled member outputs may

be fed back to its inputs through—contrel cempenents.. - All . _ .

the feedback paths between controlled member inputsTéhd out-

puts can be arranged so that there is not more than one trans-

fer function in each path, as shown in the figure.

‘ e u, . ¥4
Control —>
% %F % ? led Yo
Yy | Member >
—@ ,Q? v,
611
G2
3 Gzl Y
G2
R
G3

Figure 4.1 A Controlled Member with Coupled Inputs

If the transfer function between the input uy and any output

is desired, then u, is expressed as:
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u., = G + G + G (4.3)

2 12¥1 22Y2 23Y3

and substituted into equation (4.2):

(L) = Gy )y + (£y=Gyylyy + (&3 - Gy5)yy = mouy

5r ce ——— - . . - _

I e iy, = 4.4
_lyl+_2y2+_3y3—mu (4.4)

-1 1

‘ * *
where the elements of the vectors £., £

*
L £, and £3 are ratios of

i,

'polynomia}s of the Laplace variable, since:

£y =4 - Gy
*
£y = £, - Gy,
.
Ly = £y = Gyy (4.5)

The transfer function between the input u,; and any of the

outputs can be obtained by application of Cramer's rule, e.qg.:

L eEe

. % *
Yy m £, 45
TP R (4.6)
S S .

To obtain the transfer function as a ratio.of two expanded
polynomials, the numerator and denominator determinants must
be expanded, which reguires operations between the polynomial
elements of the vectors my » g;, é; etc. In.many practical
cases some of the transfer functions Gij would be zeros or

simple gains and the others would usually be ratios of low

order polynomials, so that these operations would usually be
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simple and accurate.

It is interesting to realize that the operations between
the elements of the vectors actually replace the operations
that would hawve to be done between the transfer functions

Gij and the controlled member transfer functlon in the re-

guJar case W1thout coupled 1nputs, ~to obtain thé over=all
system transfer functlon.- Thus, the coupling hetween the
inputs does not require additional operations but rather a
different arranqement of the controlled member equations and
the correspondlng control system members, according to the

procedure that was described above.

4.4 A Method for Finding the Relationships between the

Transfer Function Coefficients and the Design Parameters

In a parameter optimization procedure a representation
of the control system must be done at each step of the opti-
mum eggtch'in order to evaluate its performance and to com-
pute the new step. The derivation of the system transfer
function may be-a time consumming process, especially for
high order systems. In the algorithm that was discussed pre-
viously the transfer function must be computed twice for each
design parameter for the computation of the gradients at each
step. Inaccurate computation of the transfer function co-
efficients may cause problems like the "performance index in -
crease in half a step" and incorrect gradient values, arising
usual}y when the system transfer function is computed twice
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for close values of design parameters.

If the transfer function coefficients c¢an be expressed
as simple functions of the design parameters, then after
these functions have been detgrmined, the values of the co-~
efficients at each step of the optimum search can be found
with relatively small additional-effort, and the derivatives _
of the system coefficients with respect to the design para-
meters can be found by directly deriving these functions.

The method proposed in this section applies to high
order complicated systems, where the computation of the
transfer function must be done numerically and the distribu-
tion of the design parameters cannot be followed easily, if
at all, through the computation from the initial system,
givenﬂpy its components, to the final mathematical representa-
tion. J |

Tﬁe design parameters may be system gains, time constants,
dampiﬁg ratios and natural frequencies. The over-all system

transfer function will be considered in the following form:

m m=~1
bm s+ bm_lS +...+b0
G(s) = n n-1
a, 57+ an_lS +...+a0
The coefficients : b, 0<3i<m
a, 0<j=<n
3 21
can be replaced by the coefficients: = 0<k<m+n
where: _ k=1
S % T By {o_giim
_ k=m+j+1
kT % {Oijin



When the system transfer function is derived by properlf
ordered multiplication of its members transfer functions,
the over-all transfer function coefficients are sums of
products'of design parameters and constant numbers. Each
one of the transfer function coefficients can be expressed

by the following general expression:

e, = };_‘, ijIPi , (4.7)

where kj are constants and Pi are design parameters. Ex—
pression (4.7) should be read as follows: "Each polynomial
coefficient is egual to the sum of all the combinatorial pos-
sibilities of products of the design parameters and constant
numbers", If there are two design parameters, for example,

each polynomial coefficient can be expressed as:

Cp = kl + k2P1 + k3P2 + k4PlP2 (4.8)

In theﬁbase of three design parameters the general expression

of the coefficients would be:

o, = k +k2P

K 1 +k P +k P otk P P +k P Ptk

AP 3 TR Pt Py PéP +k P, PP, (4.9)

1 7 37817273

In the general case of £ design parameters the number of
products or the number of constants kj can be computed by the

combinatorial expressions:

0 L, ..2 _ 4
C£+CK+C +_....-“,|'c "'2

£
‘where
ok = £
£ - (-k) T kI



Example 4.1. The transfer function of the system in

Figure 4.3 is:

G(S) = 105 + 20

3 2
1

P.S° + 57 + (Pl + lOPz)S + (l+20P2)

The constants kj for each polynomial coefficient are listed

in the following table:

coefficient k1 k2 k3 k4
c0=b0=20 20 D 0 0
ci=b1510 10 0 0 0
cz=a0=l+2OP2 0 0 20 1
c3=al=Pl+lOP2 0 1 | 10 -0
c4=a2-l 1 0 0 0
c5=a3=Pl 0 1 0 0

Figure 4.2 The Constant kj in the Polynomial

Example 4.1

Coefficients of

1+0.5s ] 20

l+PlS ‘ 1+s

¥

Figure 4.3 A Control System for Example 4.1
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To find the relationship between the design parameters
and the transfer function coefficients it is necessary to

find the values of the constants k. of the general equation

(4.7) for each polynomial coefficient. Notice that the eguation

(4.7) is linear in‘the constants kj {(also see equations (4.8)
and {(4.9)). Thus, the solution fof the bonstants of each de-~-
sign parameter can be obtained by forming sets of enocugh
equations for each transfer function coefficient, to solve
for its constants.

Td solve the 2" constants k. in_a polynomial coefficient
2" egquations aie needed., These equations can be produced by
substituting 2™ sets of design parameter values into the
given control system, and computing the corresponding sets
of polynomial coefficients. All the combinatorial products
of eaéﬁ*set of design parameters are also needed to form the
equatiqps.

‘Igjthe case of two design parameters, for example, four
equations are needed to solve for the four constants in
each polynomial coefficient. Four sets of design parameter
values will produce the following set of equations for the
cdnstants in the k'th polynomial coefficient Cp

+ F k, + P

ki, 1 1, 2 " P2 ks 1,72, "
Ck(2)= kl f Pl(z)kz + Pz(z)k3 + Pl(z)Pz(z)k4
Ck(3)= kl f Pl(3)k2 + P2(3)k3 + Pl(3)P2(3)k4
Ck(4)= kl + Pl(4)k2 + P2(4)k3 + Pl{4)P2(4)k4

(4.10)
60



The solution of the constants kj can be obtained by Cramer's

rule. e.g.:

) Tl 2yt 2
2y Tl 2yl 2
"k (3) P1(3) 25 P1(3)P2(3)
Ry hay 2 Y 2
kl= 5 (4.11)
where:
TNy T2 1T
Ty T2y T2
- t Ty T2y T2
F Ty P2y Pr TR

(4.12)

Notice ihat the divider D does not depend on the system at
all, byt only on the values of the design parameters that were
choséﬁhfo produce the equations. Also notice that in the num-
erator determinant only one column depends on the system, and
the other elements are functions of the chosen design para-
meters. It follows.that four sets of values for two design
parameters can be chosen once and then be used for all systems
with two design'parameters. The divider can be computed for
these constant values independently of the control system.
Since the numerator determinants in the expressions of the
constants kj differ only by the values in the column of system

coefficients Cp and by the location of this column, the co-

(i)
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factors of all the elements of the determinant D can be
computed as system independent constants and be used for
the computation of each kj. This computation will then be
done by multiplying a set of system coefficients by the
corresponding constant cofactors and dividing by the conétant
divider. This, of course, applies to any numbexr of de-
sign parameters as well.

Example 4.2, Consider all systems with two design para-
meters. Four sets of design parameter values are necessary
to producéhthe equations for the solution of the constants

kj' as was explained previously. The following sets may be

selected: -
set 1: Pl=l P2=1
;sgt 2: Pl=2 P2=l
sét 3: Pl=l P2=2
set 4: P, =2 P,=2

- The corresponding divider D (see equation 4.12) is 1 and the

cofactors are listed in the following table:

column cofactors
1 4] 2|-2{-1
2 2|1 2|-1}-1
3 -2 -1 2] 1
4 -1 -1} 1)1

Figure 4.4 Cofactors for Systems with Two Design Parameters

62



Suppose the constants kj in the polynomial coefficients of
-the System-in example (4.1) are to be determined by this
method. The computation of the constants in the coefficients

Cq and Cy is illustfated below:
cD =20

For the four sets of désign parameter values we dJet:

Multiplying the coefficients column by the cofactors we get:

kl = 20+4 -20°+2 +20(-2) '-20(-1) = 20
~k, = 20°2 ~20¢2 420(-1) =-20(=1) = 0
ky = 20(-2) =-20(-1)+20-2 -20+1 =0
'—k4 = 20(-1) -20(~-1)+20+1 -20-1 =0
and fgf;
cy = Pl + 10P2

the coefficients column as obtained by substituing the design
parameters values into the control system and computing the

transfer function coefficients is:

Cs =1+ 10 =11
(1)

Cy = 2 + 10 = 12
(2) '

C4 =1+ 20 = 21
(3)

Cy = 2 4+ 20 = 22
(4)
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and the constants for ¢, are:

3
ky = 1144 - 12-2 + 12(-2) - 22(-1) = 0
~k, = 112 - 1242 + 21(-1) - 22(-1) =-1
ky = 11(-2)-12(-1)+21+1 - 22-1 = 10
-k, = 11(-1)-12(~-1)+21-1 - 22:1 =0

A program for the compuﬁation of c factors and dividers
using specified sets of design parameters values is given in
Appendix C. Values of cofactors and dividers are also listed.
The progr&g is written for systems of up to six design.para—
meters and the listed results are for up to four parameters.
The computation was found to be timé consuming as the number
of‘design parameters gets larger. It should be noted, however,
‘that the values of thé cofactors and the divider must be ob=
tained'but once, and then be used for all systems of a given
numberﬁpf design parameters. The program also punches out
" the Q;iﬁes'of cofactors, as listed in the tgble in Appendix
C. For the specific choice of design parameters sets the
divider value is 1 for any number of design parameters. To
use these results for finding the constants in the transfer
function coefficients according to the‘procedure described
above, the same design parameters sets must be used to obtain
the corresponding transfer function coefficients. The proce-
dure listed in the main program may be used to dbtéin the same
sets of design parameters.

Since the values. of cofactors and dividers have been ob-
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tained independently of the control system itself {only the
number of design parameters needs to be specified), the
system's mathematical representation in terms of the design
parameters can be done by finding the corresponding numeri-
cal values of the transfer function coefficients, for the com-
putations of the constants kj in each coefficient. This_
means that the system transfer function must be derived num-
erically a number of times, even when this proposed method

is used. _This, however, is done before the optimization
prdcess begins. For £ design parameters the transfer function
derivation must be done 2£ times. This number is small in the
case of few design parameters (for three design parameters
the transfer function mu;t be computed eight times). In the
case bf‘many design parameters this number would get consid--
erably-large (32 for five design parameters). It should be
note@,{however, that in the currently used method, in the
case of five design parameters the transfer function must be
computed at least 30 times in three optimization steps. The
number of steps grows rapidly with the number of design para-
meters. Notice that the number of steps also grows with the
order of the system, and in the currently used method this
means more computations of the systém transfer funection,
while in the newly proposed method the number of times that
the transfer function must be computed depends only on the
number of deéign parameters.
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An even more significant advantage of the new method
would be the accuracy of the computation as outlined by
the following three points:

1. As can be seen in Appendix C for the specific choice
of design parameter values {only wvalues of 1 and 2
are used) the divider is always 1 and all the cofactors
are small integers so that the computatioﬁ of the
transfer function coefficients involVes minimal
roundndff errors imposed by the design parameters.
This computation can always be checked fo;ﬁacéuracy
by use of another set of design parametéfé values.

The resulting kj constants must be the séme for any
choice of design parameters., If théy vaff for
different sets of parameters values, average values
can be takeq{

2. Once the constants kj have been aetermined for each
tranfer function coefficient{,the'computation of the
coefficients at each step involves very few arith-
metic operations. Problems like the "performance index
increase in half a step”" are not likely fo happen.

3. The cbmputation of the dérivatives of the transfer
function coefficients with respect to the design para-
meters is very simple. For example, in the case of
three design parameters, using equation (4.9} we |

have:
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k _
aPl = k2 + k5P2 + k6P3 + k8P2P3
Bck
ﬁ-z" = k3 + k5Pl + k7P3 + k8P1P3
Bck
—3P3 = k4 + kGPl + k7P2 + k8P1P2

Finally, it should be noted that if the system transfer function
is computed by the state-space method (see equation 1.21),

the transfer function coefficients discussed in Fﬁis section
appear divided by the coefficient‘an. In this égée the de=-
pendence of a, on the design parameters must beraetermined
separatély. If the polynomial approach is used £or obtaining
the transfer function (as proposed in the previous section)

no special consideration must be given to a -
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The numerical accuracy problems arising in some stages
of-a parameter optimization technique have been presented
and analysed. Special attentibn was given to the solution
of the matrix equation(l.6) and to the system mathematical
representation. The accuracy obtained at eadh s?&%e of the
computation depends on the operations and the nﬁﬁérical
values involwved. | |

A slight difference between the computed static sensi-
tivities of the control system and the model, when the Model
Performance Index is used, was found to cause some of the
severe inaccuracy problems encountered in the design by
parameter optimization. In the example case "the difference
was one part of 107. Another majdi source of inacéuracy
is the inversion of the matrix En' Large values of the matrix
elements, which result in a large determinant value, may
cause severe inaccuracies even when digital overflow or under-
flow do not occur in the matrix inversion. This problem can
be handled by reduction ¢f the matrix elements before its
inversion; The reguired reduction fagtor would depend on the
transfer function coeffiﬁients and on the order of the system.

No specific criterion for the value of the reduction factor
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has been established. However, keeping the matriﬁ determin-
ant value below 1040 has given satisfactory results in the
~cases that were examined. A situation where the diagonal
elements are significantiy smaller than elements on their
right in the rows is also unfavorable. Scaling the system
coefficients is a useful means for conditioning matrices
and vectors in a desirable way. The importance of accurate
system representation to the optimization procedure has
been emphasized. .

Alternative approaches to the problems of thgksystem
mathematical representation and the solution ofgéﬁe matrix
equation (1.6) have been suggested for better aqéuracy and

cost effectiveness.

5.2 Recommendations

Some of the changes recommended here have been applied
to the parameter optimization program ﬁsed aEMthe Measure-
ment Systems Laboratory at M.I.T. and have given:the desired
improvement in the accuracy of the computation. The recom-~
mendations are listed below:

1. Pixing the system static sensitivity to be exactly

equal to that of the model (fixing the value of X
1l

at ~1 when the model static sensitivity is 1) has
resulted in immediate improvement of the computed
results.

2. Reducing the elements of the matrix En prior to its

inversion when these elements are large has improved
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the accuracy appreciably. The decision to reduce the
matrix elements and the choice of the reduction fac-
tor can be built in the program by examination of the
characteristic coefficients and the éystem order.
Consideration of the general expression of the E_
matrix (see Appendix A) may be useful in estimating
the magnitude order of the matrix determinant

without computing the determinant value itself.
Scaling the system coefficients can be used to con-
trol the conditioning of matrices and vectors. It

is recommended that the scaling operatiqgibe sepa-
rated from the reduction of the matrix elements that
was discussed above. Additional researcﬁhéhould
establish more specific criteria for scaling the
system coefficients on a selective basis. Condi-
tioning the matrix E. prior to its inversion is one
use of such scaling. The reduction Qﬁ_the.matrix
elements, on the other hand, should be dohe routinely
whenever these elements are too large.

The option of inverting the matrix E in extended
precision has been suggested. The matrix inversion
program and the control cards are given in Appendix B.
The computation of the initial conditions can be done
in double precision without substantial additional
storage. This change has given significan£ improve-

ment in the computed results.
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6. As was discussed in section 2.5 some of the computa-
tion currently done in the determination of the ele-
ments of the state matrix X is unnecessary, Since
many of these elements do not take part in the com-
putation of the performance index. Except for the
first column of the matrix X only the elements in-
cluded in the (£+1)x(£+1) left upper corner of the
X matrix'mmst be computed (£ being the order of the
model) .

7. In the optimization program currently used a routine
for checking and correcting the matrix XAto be sym-
metric is include. This is not neccesary since by
the shifting operation in the computatioﬁfof the
columns of the matrix, discussed in section 2.5,
the computed X matrix is always symmetric.

8. The method for solving the matrix equation (l.&),
that was proposed in section 4.1 would p:ovide a more
accurate and less expensive scolution than the method
currently used. This method can replace the current
algorithm without additional changes in the optimiza-
tion program.

9. The method proposed in section 4.2 for the computation
of the system transfer function may be more accurate
than the one currently used, but its accuracy has
not been examined. It suggests a different approach,

avoiding high order matrix operations.
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10. The method proposed in section 4.4 is recommended
as an accurate and cost effective way for comput-
ing the system transfer function and the gradients

at each step of the optimization procedure.
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APPENDIX A

THE MATRICES E;

The first three Ei matrices are given below:

B i -
a,.q -~ 0 ¢.......0 Y
(.) an_l "‘l Oooon .-‘00 0
O 0 'R E R o.an_l _l
a Al enearaa - | 2a
0 1 n-2 n-1
—a. g 0 Dereeernnnennan 0
an_2 an—l 1 0 0
0 an_2 a1 -1 0
0 0...- " e v e ea -an_2 —an—l
-al —azl N EEEREE] .oan_3 0
—::;10+2r:1laln__1 _al+2a2an-l‘f""'-an~3+2an-l n=2
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n-1
0 -3 Ta8h-2
0 0] a,_s
0 0
ag ay
B e R e B S
2 2
ZaOan_l ~2a0an_l+2alan_l

The first and last columns of E4 and E

LR S I R
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Za -a

n=-3 n-

—2an-3ag—l
fzanvzan—l

5

1an*2

S

n-1
zan—B

2a,_ o8, 9

are given below:




i

4

Al memasaeee beterrra e .
?
6
%0
2aga, 4
229251
ana _3+2a0an_2an_l—2a0ai_l
2 4

aoan_Ban_l—4a0an“2an_l+2a a

0 n-1°""

qn-2%n-1
2

+6an_lan__3

ﬁn—3an-2
ﬁﬁan-2a

5
+2an_l

As the computation of the E. matrices proceeds, the elements

shift upwards in the columns, inverting signs, while the

last element of, say, the Kth column is computed by multi-

plying the k'th column of the previous E métrig by the last

row of the system's matrix A,
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APPENDIX B

A PROGRAM FOR

MATRIX INVERSION IN QUADRAUPLE PRECISION

The program is a modification of the IBM/I Scienti-
fic Subroutine Package MINV program for extended precisidn
and for utilization by a FORTRAN main program. Also
listed is the control cards set up for the IBM/370 system
at M.I.T. Information Processing Center. This ;%Eﬁup may

change due to improvements of the system.
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8.1 The Matrix Inversion Program

MINVee ' MINV 10

f#-ltiHHHHi(Hi{HiCHHHH!####ﬂ#####ﬂ-##ﬂ-ﬁﬂﬁ#iHHiﬂﬂﬂth'IHHt'ﬂ'I'ﬂvﬂﬁﬁﬁ-ﬂ-##ﬂ-ﬂﬂﬂ#ﬂ#*ﬁ-ﬁﬁﬁﬂﬂfﬂINV 20
/% , | N o , ' s/MINV 30
/% TO INVERT A MATRIX , a/MINV 40
e : ¢/MINV 50
Jenininbsspap bt ondsoant sttt AR RN RS HARERO AR ARGHARAR OGO R DR RESMINY 60

PROCEDURE (AQ+NsDQsCONG)OPTIONS (FORTRAN) s LA LI

CPUT SKIP LIST(YJUST ENTERED MINV?) S
PUT SKIP DATA{AQeNsDQsCONQ) S

DECLARE \ . MINY 80
ERROR EXTERNAL CHARACTER(1) MINV 90
(ToJdsKeNsbL (N)sM(N)) MINV 100

L : : _ ]
FIXED BINARYs MINV 110
#y
FIXED BINARY (3140},
(BIGAHOLDsD+CONsS) BINARY FLOAT(109),
A{1INs1IN) BINARY FLOAT(109),
DCCIiNs13N) BINARY FLOAT(109),
© 7 (DQeAQ(20+20) «CONQ) BINARY FLOAT(53)+./%DOUBLE PRECISION INPUT #ue]3]
/% BINARY FLOAT (53)s. /#DOUBLE PRECISION VERSION /aD#/MINV 140
/% ' L ' #/MINV 150
: D=0Qs, o
DO I=1 TO No.
DO J=1 TO Ny
A(Ls I=AQ(T o) oe
ENDss . L
ENDs. | I - TR
CON=CONG» . ‘ e :

ERRQR=¢Q0"%y, MINV 160

IF N LE © MINV 170

THEN DOy, MINV 180
ERROR="11,, /% ORDER OF MATRIX = 0, - #/MINV 190
GO TO FINse , . MINV 200
ENDos e ' MINY 210

1F CON= 0 . | MINV 220
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THEN

/RTHEN
ELSE
IF N
THEN

s =1 .0E=Ss.
S =]1,0E=~15+,
S =CONy .

0 =A‘191)’.

IF ABS(D) LE S

THEN DOQsy . ‘
ERROR='2‘ %
ENDys o

ELSE A(ls1) = 1/0y.,

GO TO FINs. '

ENDy .

=1,04.

00 K =

Lx?

M{K)

BIGA

l TO N!o

=Ko

=K e

SA(KIK) va

DO I=K TO Nes

00 J=K TO N,

e
A

SINGLE PRECISION VERSION /#5%/MINV
DOUBLE PRECISION VERSION /#D%/MINV

INVERT A SCALAR

SEARCH FOR LARGEST ELEMENT

IF ABS(BIGA) LT ABS{A{l,0))

THEN DO!-
BIGA
L (K}
M{K)
END!.

=14
SJee

. END’-
J =LK,
IF L(K) 6T K
THEN DO,,
DO I =1 TO Ny
HOLD =~A(Ksl)s,
A(KeI)=A(Jel) e,
Al(JsyI)=HOLD .
) END!.
'END!. :
I =M (K} 9,

=A(Ied) v

END'Q %

Va4

INTERCHANGE ROWS

INTERCHANGE COLUMNS

MINV
#/MINV
MINV
MINY
MINV
MINV
MINV
MINV
MINV
MINY
MINV
#/MINY
MINV
MINY
MINV
MINV
MINY
MINV
MINY
MINV
MINV
MINY
MINV
MINY
MINV
MINY
#/MINV
MINV
MINV
MINY
MINV
MINV
MINV
MINY
MINY
# /MINV

23

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
459
460
470
480
490
500
510
520
530
540
550
560
570
580
590

600



6L

L
/%
/%

COMP. .

p——

IF M{K) 6T K
THEN DO’.
DO J = 1 TO Ns.
HOLD =«A{JeK) .
ACdsK)=A(Jel) we
A(JsI)=HOLD,,
END!.
‘END'-
IF ABS(BIGA) LE S
THEN DO,
D 0409,
GO TO COMP,,
END!-

DIVIDE COLUMNS BY MINUS PIVOT (VALUE OF PIVOT ELEMENT 1S

CONTAINED IN BIGA)
DO-1 = 1 TO N,

IF. I NE K
THEN ACIoK)=A{L 4K}/ {=A{KsK)) 2,
DG I =1 TO Ns,o- /% REDUCE MATRIX
IF I NE K
THEN DOy,
DO J =1 TO N».
IF J NE K _ ~
THEN A(IsJ)=A(T+K)#A(KeJ)*A(TsS)0s
END’. '
ENDs. . R i
DO J = 1 TO N’o
IF J NE K ' /% DIVIDE BY ROW PIVOT
THEN A(KeJIzA(KyJYFA(KsK) s
END’-
D SO*ALKeK) 9, /% COMPUTE ODETERMINANT

IF ABS(D) LE S

- MINV

MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV

MINV-

MINY
MINV
#/MINV
#/MINV

*/MINV

MINY
MINV
MINV
MINV

#/MINV

MINY
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
2 /MINV
MINV
MINV
#/MINV
MINV
MINV

Bfa . omavoremr oSS

e

620
630
640
650
660
670
680
590
T00
710
720
730
140
750
760
770
780
730
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950

960
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/e

yz

VS
K

THEN

R

0000

ERROR=¢21,,

GO TO FINs,.

A{KIK)I=1,0/7A(KsK) 9,

ENDO.

END’.

FINAL ROW AND COLUMN INTERCHANGE

=N§o

LOOP.,.

K

FINeo

=K=1l¢.,
IF K GT 0O
THEN DOO-

1
IF 1
THEN

IF J
THEN

=L (K)

GT K
DO!.

ENO!.

=M AK)

6T K

DO J =1 TO Nso
HOLD =A(JsK) s,
AlJeK)==AlUel) s
A(Jes1)=HOLDve.
ENDQ.

e

0000 _-

END!.

DO I = 1.TO Nys
HOLD =A(KoeI) o,
A(KeI)==A(Je1) 0w,
A(JsI)=HOLD,
END!.

" GO TO LOOPs.

END!.

0G=0s.

/% DETERMINANT IS ZERO

/% REPLACE PIVOT BY RECIPROCAL

MINV 970" Y T

#/MINV 98B0
MINV 990
MINV1000

#/MINV1I010
MINV1020

#/MINV1030

#/MINV10640

#/MINV1050
MINV1060
MINV1070
MINV1080
MINV1090
MINV1100
MINVI10
MINV1120
MINV1130
MINV1140
MINV11S0
MINV1160
MINV1I170
MINV1180
MINV11g0O
MINV1200
MINV1210
MINV1220
MINV1230
MINV1240
MINV1250
MINV1260
MINVI270
MINV1280
MINV1290
MINV1300
MINV1310
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. e

AQ=A,,
DO I =1 TO N3

DO 4 =1 TO N3
AQ(T»d) = A(Isd) 3
ENDS
END$

i #

T PUT SKIP LIST('ABOUT TO RETURN FROM MINV')S

CLOSE FILE(SYSPRINT)G
RETURN, .,

ENDs.~ - /2END OF PROCEDURE MINV

MINV1320
#/MINV1330



B.2 Control Cards Set Up for IBM/370 System at M.I.T.

77 TRAWE 'CLASS=AVREGION=3S0K

AEMITID  USER= B -
/#MAIN TIME=2.LINES=6+CARDS=0

LASTERY  EXEC—wEDRC B L - oot i v Bt e e

//7C.5YSIN DD =

A

FORTRAN cards

- _J/SIEPD2 cC_ _ 2P
// PARM,G='COMPATIBLE? : s
LACSYSIN 0D #,0CB=BLKSIZE=2000 .. . .. e R

=4CS5(48) +OBUECTsNORUNWCOMPATIBLE Yy

T

PL/I cards

'

//L«SYSLIB DD DSN=U.M8230.7182.5UBR.PALSSsDISP=SHR

LA—.DD

7/ DO

AL DD -DSN=SY¥S52.55P.SUBRLDISP=SHR

rf DO DSN=SYS1.FORTLIB«DISP=SHR ...
v DD DSN=SYS5.FORTLIB.SUBRADISP=SHR -

//L.SYSIN DO ¢

T

OBJECT cards

ENTRY MAIN
NAME_USERPROG

//G,FT06F001 DD SYSOUT=A.DCB={RECFM= VBA;LRECL 13708LKSIZE 2036}

LZGLFTOSF00) DD #NCR=RLKSIZE=2000 . -

!

DATA cards
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APPENDIX C

THE SYSTEM INVARIANT DETERMINANTS AND COFACTORS

A program for tﬁe computation of the system invariant
determinant and its cofactors for the determination of the
reiationship between the system coefficients and the design
parameters is listed. The prdgram computs determinants and
cofactors for systems of up to six design parameters. Also
lisied are tne results for specified sets of des?&h para-
meters, that can be used for the computation of.the constants

k.

j as described in section 4.4,
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cC.

1

The Computer Program

e

DIMENSION P(619A(64964)QB(6Q’64)yDET¢64) ' R
21002 FORMAT (* "' DETERMINANT=*,F8.1/* THE COFACTORS OF THE I COLUMN
- 10F THE NUMERATOR DETERMINANT.*/t' CORRESPONDING TO THE CONSTANT Kl
2) +ARE LISTED IN THE I GROUPY /72 1v/)
1003 FORMAT (111, 'NUMBER OF DESIGN PARAMETERS = #,11/' THE FOLLOWING SET
1S OF DESIGN PARAMEYERS VALUES ARE USEDY )
1004 FORMAT (133X 10(FB.192X) Z(6Xe10{F8.1¢2X)))
1005 FORMAT(10F8,1)
IOOb FORMAT(* 0 ,0SET t,125¢ =1,6(F7,1))
00 410 L=1,6
WRITE(6+1003)L
Ll=L-1
L2=i=2
T L3I=L=3
La=L-4
I1=1
DO 10 Tlz=lsL
10 P(Il)=1.
WRITE(6s1006)IT1s(P(J)sd=14L)
CALL AMAT(P+IIsAsL)
DO 20 Il=1.L
11=11+1
P[Il)=2l
WRITE(6+1006)11+(P(J)sJd=lsl)
CALL AMAT (P, IIvAoL)
20 CONTINUE -
CIF(L.EQ. D) GOTD 200
DO 30. Il=1eL1
I11=11+1
DO 30 I2=I11sL
I1I=11I+1
P(Ili=2.
P(12)y=2,
WRITE(6+1006)I1e(P{J)sd=1sL)
CALL AMAT{(P+IIsANL)
-30 CONTINUE



BT R

G8

IF{L.EQ.2) GOTO 200
DO 40 Il=1.12
I11=11+1

DO 40 12=I11.L1
I121=12+1

DO 40 I3=I21sL
IT=II+}

P{TIl)=2,

P(I2)=2.

P(I3)=2,
WRITE(G6+1006)IIs(P{J)sJd=1sL)
CALL AMAT(PsIIs+AsL)
CONTINUE

IF(L.EQ.3) GOTO 200
DO S0 Il1=1,L3
I11=I1+1

DO S0.12=111+L2
121=12+1

DO 50 I3=121,L1
131=13+1

00 S0_I4=131.L
IT=11+) ...
P(Il)=2,.

P(12)=2,

P(I3)=2,

Pl{l4)=2. .
WRITE(6+1006)I1s(P(J)sJ=1,4L)
- CALL AMAT (PyI1sAsL)
CONT INUE -
IF(L.EQ.%) GOTO 200
DO 60 Il=1l.L4%
I11=I1+1

DO 60 12=111+L3

121=12+1

DO 60 I3=I2l.L2

I31=13+1
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F I

DO 60 T4=131.L1

l4l=14+]
DO 60 IS=l4l.L
II=11+1

Pl =2,

P(12)=2,

P(I3)=2,
Pl{I4)=2e -
P{I5)=2.

T WRITE(6+1006)EIe(P(J)ed=1sL)

60

CALL AMAT(PsIleAsl)
CONTINUE

IF{LLEQ.S) GOTO 200
I11=11+1

TP(Il)=2.

200

210

100

101

Pl12)=2,
P(I =2,

P(IS)=2.

P{Is)=2.
WRITE{6s1006)I12(P{J)sdslyl)
CALL AMAT(P+IlsAel}

LL=2%#L

I=1

DO 210 II=1,LL
DO 210 JJ=1,LL
B(ILsJJ)=A(ILsJd)
1%=0 :
KC=LL

J=0

GOTO 300

NENDS |

IF (J.GTLL) GOTO 410
1=0

I=1+1

~~IK=0



L8

- DO 221 Il=l,tL

220
221

300

21
12

13

14

18

19

.
17
22

IF{I1.EQ.I} GOTO 221
IK=IK+1

JK=0

DO 220 JJ=1leLL
IF{JJ.EQ ) GOTO 220

JK=JK+]

BUIKsJK)=A(ITIvJJ)

CONT INUE

CONTINUE

KC=LL~1
IF{KC.EQ.1)60 TO 31
IREV=0

DO 22 IT=1sKC

K=1IT .
IF(B(KsIT))21011s2]
K=K+l :

IF (K= KC]QvQ;Sl
IF(IT=K)12+14+51

DO 13 M=],+KC
TEMP=B(ITeM) -
B{ITeM)=B{KsM)
B(KsM) =TEMP
IREV=IREV+]

I5=1T+1

IF(IS.GT.KC) GOTO 22

DO 17 M=IS,KC :
IFIB(MsIT)II19417s109
TEMP=B{M IT)/B{ITsIT)

DO 16 N=IT+KC
B(MeN)=B(MyN)=B{IToN)*TEMP

CONTINUE
CONTINUE
DET(I)=1.
DO 2 IT=1+KC

DET(1)=DET (1) *B(IT+IT)
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51

31
316

- 320

400

410

10

...‘1.,?0

DET(1)=(-1.D0)#*IREV#*DET (1)

6070 310

DET(I)=0.

60TO 310

DET(I}=B(ls1)

IF(IX.EQ.0) -GOTO 400
IF(1.EQ.LL} GOTO 320"

G0OTO 101

WRITE (651004)Js (DET(1)s1=1sLL)
WRITE(7+1005) (OET(I)sI=1sLL)
GOTO 100 N
WRITE(641002) DET(1)

Ix=1

GOTO 100

CONTINUE
STOF

END .

SUBROUTINE AMAT(PsII+AsL)
DIMENSION A{64:64).P(6)
Ll=t~1

L2=L=-2

L3=L-3

La=L=4

JJ=1

A{II’JJ’=I.

DO 10 1l=l,.L

Cddzddel .

A{IIsJ04) P(Il)
IF(L.EQ.1) GOTO 1400
DO 20 _I1=1,L1
I11=I1+1

DO 20 I2=111-+L
Ja=JJde+1
A(TIT+JN)=P(I1)8P(I2)
CONTINUE

T i o on 30 0 AR e T
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IF (L.EG.2) GOTQ 100

00 30 Il=1,L2

I11=11+]

DO 30 I2=Il1l,t1

121=12+]

00 30 I3=I21sL

Ja=JJd+1

AlII,JJ)=P(I1)2*P (]2} *P(13)
30 CONTINUE

IF(L.EQ.3)GOTO 100

DO 40 I1=1,L3

Ill=11+1

D0 40 I2=Ii1sl2

121=12+1

00 40 I3= 121,L1

I131=13+1 '

D0 40 14=131.L

SNENNLS

A(TT+JJ)Y=P{T1)2P(I2)#P(I3)%P(]4)
40 CONTINUE

IF(L+EQe4) GOTO 100

DO SO I1=1lyL4

111=I1+1

DO 50 .12=111,L3

121=12+1

DO SO .I3= 21,2

131=13+1 :

DO 50 I4=[31sL1

Tal=14+1 :

DO 50 I5=I4lsL

Ju=dJdel
FACIT»dASPID 2P (I2) 4P (1) #P(I4) #P(IS)

IF{(L.EQ.5) GOTO 100

A(ITyu} P(l)‘P(E)*P(3)*P(4!*P(S)*P(ﬁ)
SO0 CONTINUE
160 D0 500 =1L



06

500 P(I)=1.

RE TURN
END
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C.2 PDeterminant and Cofactor Values for Specified Design Parameters

NUFBER CF CESICN [PARAMETERS = 1
THE FLCLLL®WIANG SEYS CF CESIGA PBRAMETERS VALUES ARE USEC

SET 1 = 1.C
SEC 2 = 2.0 ‘ I .
CETERMINANT = 1.0
TrE COFACTORS CF THE . I CCLUMN OF THE MJI¥ERATCR CDETERMINSANT,
CCHAESPENCING TO THE.CONSTANT KIT1,ARE LISTED IN THE I GRCLP
H
1 2.c 1.9 ) i
2 1.0 1.0

v e e e e

| NUVBER CF CESTEN PARAMETERS = 2

THE FCLLCWING SETS OF CESIGA PARAMETERS VALUFS ARE USED

SET 1 = 1.¢C 1.0 .
SET 2 = .C 1.0 , , ) G e . — - e e
SET 1 = 1.0 2.0
SET 4 = 2.0 2.0
DF TERMINANT= 1.0 , .
THE CCFBLTLRS OF TFE | CCLU¥N NF THE KUMERATCR CETERFINANT,
CCARESPCMUING TC THE CONSTANT K(1),8%E LISTEC IN THE I CROLP
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